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Motivation

→ Variation of Beam Momentum and Tune Tracking
• LHC momentum acceptance small
• tight tolerances on betatron tune

→ Amplitude of synchrotron side-bands
• Qs too low to distinguish side-bands from main tune peak
• affected by resonant behaviour not linked to Q’

→ Width of betatron tune peak
• requires knowledge of ∆p/p
• affected by other sources of damping/decoherence. 

LHC
• Problems with existing methods for Q’ measurement

⇒ Test new “Head-Tail” technique in the CERN-SPS
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The Head-Tail Principle
• The Principle:

→ Apply single transverse kick and observe resulting betatron motion.
→ Chromaticity will determine the pattern of this motion.
→ By following the time evolution of any two positions within the bunch a 

phase-difference is obtained from which the chromaticity can be 
calculated.

• Assumptions used in the Theory:
→ The displacement due to the kick is much larger than the betatron

oscillations performed by the particles in the unperturbed bunch.
• i.e. when the kick is applied all particles are assumed to have the 

same betatron phase.
→ The synchrotron frequency is the same for all particles in the bunch.

• This assumption holds as long as the measurements are performed 
close to the centre of the bunch.

→ The presence of higher order fields such as octupolar fields are not taken 
into consideration.
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The Head-Tail Principle
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The Head-Tail Principle
ΣSignal  - Longitudinal Bunch Profile
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The Head-Tail Principle
ΣSignal  - Longitudinal Bunch Profile
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The Head-Tail Principle
The phase difference as a function of the number of turns from an initial kick is given by

∆ψ ( )( )1nQ2cos)n( s −πτ∆ω−= ξ

where ωξ is the chromatic frequency and is defined as  ω ξ
η
ξ

ω=
00Q

The maximum phase shift is obtained after half a synchrotron period, when nQs = ½

∆ψMAX τ∆ω−= ξ2

The relative chromaticity can therefore be written as

ξ = relative chromaticity ∆ψ = head-tail phase difference
η = 1/(γ)2 - α ∆τ = time between the sampling of head and tail
Qs = synchrotron tune Q0 = betatron tune
ω0 = angular revolution frequency n = number of turns since the initial kick
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CERN-SPS System Set-up

Straight
Stripline
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Hybrid
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The CERN-SPS Head-Tail Monitor

Coupler long enough
for bunch length
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• Straight stripline coupler - 37cm long
→ completely resolves a bunch < 2.5ns in length

NOT the case in the CERN-SPS where bunch length is ~4ns

Useable signal ~2.5ns
⇒ measure head & centre

NOT head & tail

Pick-up

Signal and Reflection
NOT fully resolved

Coupler too short
for bunch length
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Measurements Conditions

• Measurements performed during CERN-SPS “25ns Run”
→ LHC batch of 84 bunches with 25ns bunch spacing
→ Acceleration from 26GeV to 450GeV
→ Intensity of ~ 2×1010 protons per bunch

• Q’ measured mainly in the vertical plane
→ Transverse Damper switched OFF in measurement plane
→ Beam excited using a single kick from the Q-kickers
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Measuring Q’

Qs
-1 = 97 turns
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Measuring Q’

Qs
-1 = 230 turns
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Measuring Q’
Comparison of Head-Tail Chromaticity Measurements

with Radial Steering Measurements at 115GeV in the SPS 

ξhead-tail = 0.45ξradial-steering + orbit dependent offset
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Measuring Q’’ and Q’’’
Radial Position versus Chromaticity (115GeV)
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Multiple Q’ Measurements
• Several Q’ Measurements on SAME SPS elementary cycle

→ rate limited to 0.5Hz by GPIB data transfer & scope reset time
→ demonstrated on SPS using 3 Q-kickers

ξ=0.036

1000ms : 36GeV

ξ=0.037

3000ms : 115GeV

ξ=0.005

5000ms : 265GeV
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Improvements and Developments
in 2001/2002

• Added 60cm long coupler
→ can fully resolve bunches up to 4ns in length

• Added low loss cables & reduced cable length
→ increase in the overall system bandwidth

• Performed more complete simulations
→ originally intended to find source of missing factor

• Turned out to be hardware related
→ developed into a robustness study for the technique

• Effect of accelerating buckets
• Effect of Q’’ and Q’’’ 
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Measuring Q’ (long coupler)
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Understanding the Scaling Factor
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Signal Output
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Signal Output
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Effect of Deconvolving Cable Response
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Effect of Sampling Rate
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Simulations
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Simulations
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Tracking v Analytical Approach
Stationary Bucket:
• Measurement at Bunch Head w.r.t. Bunch Centre
• Comparison of tracking (solid lines) & analytical estimate (dashed)
• Error in φMAX negligible

τ = 0.5ns τ = 1.0ns
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Tracking Results

Stationary Bucket:
• Maximum phase shift 

reached is linear with 
distance from centre

Measurement is valid for:
• Centre to Head
• Centre to Tail
• Symmetric Head to Tail



BNL2002   - Rhodri Jones (CERN - SL/BI)

Effect of Acceleration

Head & Centre Centre & Tail

Symmetric
Head & Tail
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Effect of Acceleration
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Effects of Acceleration (SPS Data)
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Effect of Acceleration
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Effects of Acceleration (SPS Data)
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SPS Impedance Effects at Low Energy 
Change of Head-Tail Phase Difference with Intensity

(MESPS-short at 26GeV on the P2 cycle)
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Conclusions
• Experimental

→ Operational Head-Tail Q’-Meas. system demonstrated
→ Technique also allows Q’’ measurement
→ Chromaticity measurement demonstrated at 0.5Hz
→ Deconvolution required to remove perturbations due to hardware 

bandwidth limitations
→ Useful instrument for other applications

• transverse instabilities
• possible use for SPS impedance measurements

• Theoretical
→ Method applicable for both stationary and accelerating buckets

• Experimentally verified with the constraint that the measurement be 
performed symmetrically about the bunch centre

→ LHC robustness demonstrated for:
• Non-linear chromaticity (Q’’ and Q’’’)
• Linear coupling (if arc-by-arc compensated as foreseen for LHC)
• Impedance (by extrapolation from SPS to LHC)
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